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TR403
”\} ABSTRACT
«In.this-report an approach is propo.sed for the construction of Liapunov

functions for certain types of second and third-order nonlinear systems. If

’ . . . . : . e
the system is described by a vector differential equation, ¥-=F- ("-l, kz"ki"i'i‘)*x‘r“"’

J
whe-pemkiw,wk?m”kg'a‘r'e“*p"cfratm”etewsWefmthe.«system, a Liapunov function
V = x'Px- (P is a-constant-matrix) which ensures stability of the linear system
for all values ef-»&i-ékinﬁwi’{gwis called a common Liapunov function (. CL.F ) in
the given range. , While it may prove difficult to determine sucha CLF , a
Liapunov function nggjmlgk, ,};;%%ay be selected to ensure the stability
of the linear syétem over the ;ntire vra'nge of the parameters. Under certain
conditions,this Liapunov function may be easily modified for use as a Liapunov

"Hl‘“um
function for a nonlinear system in which theu'ki:»'ls are functions of the state

A
variables.
Using this approach, sufficient conditions are determined for the
sté,bility of a differential equation of-the-formmrto-
Kby R g R PR 0

in terms of the bounds on certain functions,derived-from- f,.g- and-h .

\“‘\
H
&
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STABILITY OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS
USING THE SECOND METHOD OF LIAPUNOV
by
Roger M. Goldwyn and Kumpati S. Narendra
Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts

I. INTRODUCTION

In recent years considerab!: interest has been shown in the study of
the stability of dynamical systems using the second method of Liapunov.
Using thisapproach,the stability of a dynamical system is assured by the
determination of a positive definite function V(’.E) whose derivative with
respect to time is negative definite. The conv.entional approach is one of cut
and try where a positive definite function V(x) is chosen as a candidate for
a Liapunov function and the parameters of the system are adjusted to make
i’(_:g_) negative definite, While systematic ways of generating Liapunov
functions do exist for linear time-invariant systems (yielding Routh-Hurwitz
conditions implicity), the generation of such functions for nonlinear systems
is more difficult. Recently,the "variable gradient method" [Ref. 3 ] was
introduced as a systematic way of generating Liapunov functions. While this
approach may, in principle, be used for any order system, in practice, even
for a third-order system, it becomes fairly involvéd, since no set procedure
exists for the choice of the elements of the gradient to satisfy the above

conditions.
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In this report a method related to the concept of a common Liapunov
function for a linear system is presented for obtaining ILiapunov functions for
nonlinear systems of low order.- Since,foralineér system, it is possible to
derive necessary and sufficient conditions for stability, the present approach
relates the noniihea;r problem to a corrésponding~1ine;.r problem for which
_stability conditions are well known. If a linear system is described by a set
of differential equations % = Fx , V(x)=x'Px isa Liapunov function if
'Q is positive definite where V(x)=x'[F'P+PF]lx=-x'Qx . While

da

every positive definite P need not yiel positive definite Q , the solution

of the equation )
E'B + PE =-Q
for any positive definite Q must yield a positive definite P if the system is

stable. This important result is used thfoughout the aeveluopment of the

present report.

II. COMMON LIAPUNOV FUNCTIONS
Consider the linear system of equations

¥ = Fx (1)
where F is a constant (n x n) matrixand x ar (n x 1) vector. Let E
be dependent linenarly on a parameter k where k .is assumed to be in the
range

k<k <k

If V{x)=x'P x where P is a positive definite {or > 0) matrix is considered

as a candidate for a Liapunov function

Vix)=-x'Qx (2)
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where
Q= F'P +PF . 3)
If Eq. ! is asymptotically stable in the given range, then for any symmetric
Q>0 the unique solution of Eq. 3 for P yieldsa P>0 . Since F =F(k),
the resulting P will,in general,be a function of k-—i.e., P=P(k). Eq. 3
may be considered as a mapping of the set {9} of positive definite matrices
into the set <§ (k»)} of positive definite matrices. If there .exists a matrix P
which is a member of {E(k)} such that
Qf (k)= - [F' (x)F" + P*F (1) ] (4)
is positive ,defi!nite for all 'k in the given range, then
Vix) = x' Bx (5)
is a Liapunov function for Eq. 1 and will be termed a common Liapunov

function ( CLF) in the range (k <k <k ) [Ref. 1].

A, CLF for First-Order System

Consider the first-order system shown in Fig. 1 .

Figure 1. First-Order System
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The system may be described by the equation

X = ax - kx . (6)
Consider the function
v o= px° . : (7)
Then
. . . 2, 2
V=2px [ax - kx] = 2p (a - k) x“ = -gx~ - {8)

It is clear that Eq. 6 is asymptotically stable for k > a or, for any q >0,
pof Eq. 7is >0 in the region k>k>a . . In order to obtaina CLF in
the given range, p must be chosen independent of k.
Choosing

p = (k-a) (9)
v =..(1_§ - a)xz is a CLF for the system in the range k> a since

'\"=2(1_5-a.)(a.-k)x'2 =-q’x?' q>0 . (10)

If kek(x), V=(k-a) x?‘ may still be considered as a CLF if
k = Mxin [k(x) ], and k> a since
V= 2(k-a)(a-k(x))x> < 0 . (11)
The nonlinear equation is asymptotically stable in the large for k > a ,
This simple example indicates how,for certain nonlinearities,a -CLF
for a linear system may also be used as a Liapunov function for the nonlinear

system,
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B. CLF f{for Second-Order System

The simple example of the preceding section was presented to indicate
the first step in an approach that might hopefully yieldha-logical procedure
for the derivation of results for a third-order system. The difficulties of such

.an approach become obvious even when considering a simple second-order

system (Fig. 2).

e X
1
- f(x) > 2
8 +as +b
.
Y

Figure 2. A Second-Order System

The second-order system shown in Fig.2 may be represented by the

set of equations

17 (12)
:7:2 = -k(x)x -ax,
where k(x1 )=b + f(xl) . Interms of Eq. 1
E= 10 ! (13)
- k(xl) -a
When k is treated as a parameter, the range of interestis k > 0 . [ For

k = 0 one of the eigenvalues is zero so that the system is stable, but not

asympotically stable. ]
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If V=x'Px, then V= -x! Qx where

(k) = 2kpy, kpy - Pyt 2Py,
(14)
kp,, - P;; tapy, 2ap,, - 2P),

If a common .Liabimov function V exists, it must be possible to select - P

from Q (0), since k=0 lies in the allowable range of k.

Qo) = 0 APy " Py
(15)
3P12 " P11 2(2pyz - P1p)
Q (0) can only be positive semi-definite and, hence, one must select
9 "9 =0 oF
apyy ¥ Py . ‘ (16)
.Hence,
Qik)= |2kpj, kpa2
(17)
kPo2 2 (apy; - Py
.For positive definiteness of Q (k) it is necessary that
) py,s aPyy; - Py, > O
12 22 12 (18)

(ii) det Q (k) = q(k) > 0.

2

2
q(k):"k P22 +4kp12(ap22'p12) . (19)
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It should be ébserved that it is impossible to get a CLF of the assumed
quadratic type for all k > 0 , since for some value of k, q(k} must become
negative. The maximum value of k for which a CLF may be determined is
given by
4Py (3P " Py;)

k= > ‘ (20)
P22

Any matrix P which satisfies conditions Eqs. 16 ard 18 is positive
definite for k, a > 0 . In particular, it is of interest to select a P which is
independent of k, since x'Px is then a Liapunov function of the nonlinear
system.

Since P is to be a constant matrix, selecting arbitrarily Pyp = 2
and maximizing Eq. 20, Py =2 and

V=x' az a x

(21)
a 2 3
is a CLF for the range 0<k < k = a.z and indicates stability of the nonlinear

system when k = k(xl ).

C. The Liapunov Function V =x'P(k)x
The inability to obtain a- CLF of the. a;ssumed quadratic form (x'Px)
for the linear problem in the entire range k(xl }) > 0 is a serious drawback
to the method. The difficulty may arise due to the restrictive nature of the
definition of a CLF , i.e., the assumption that V(x) is a.quadratic form.
The off-diagonal term kp22 of Eq. 17 is responsible for the upper bound. on k
Additional freedom may be obtained by permitting Py, to be linear in k, i.e.,

Pjp7¢ + vk (22)k
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where ¢ and v are constants. Thus, Q (k) of Eq. 14 may be expressed as

Q(k) = kalz kpzz-c- vk+a.p12
(23)
kpzz ~¢c~vk+ ap, Zapzz - Z.p.12
Since k = 0 lies in the allowable range, it is necessary that
c = ap;, - : (24)
With Eq. 24,
q(k) = det Q (k) (25)
becomes
: 2 .
q(k) = - (kpZZ - vk)® + 4kP.12 ‘(aPZZ ".Plz)' . (26)
If one selects
v =Py, s (27)
then q (k) > 0 implies no upper bound on k as Eq. 20 did, since
q(k) .= 4'kp12 (aPZZ - PlZ) . .(28)
Choosing Py, = 2 and P, = a
2
q(k) = 4ka . (29)
The elements of the P matrix are
= a2 = =
p;; = a"t2k, p,=a, py, = 2 . (30)

The procedure followed so far is to select Q (k) in such a manner
as to be least restrictive on the parameter k. Since Q (k) is positive
definite for all k> 0, P(k) must also be positive definite for all k> 0, since

it is merely the solution of Eq. 3 for this specific example.



Vix)=x! az " a §+-2kx12’
(31)
a 2
= x'P_x + 2kx;° C (32)
—~ ~o=— 1

where Eo is a constant matrix independent of k. For k=k (x1 ) the second

term in V (x) may be replaced by

*1
4 5 uk(u) du (33)
0
so that,
*1
Vix) =x _I.)ol"" 4 g uk (u) du : (34)
0
and
Vi(x)=-x"Q(k)x
where
2ak
Q(k) =
- 0 2a (35)

It is important to realize what the modification of Eq. 34 has accomplished
and under what conditions such a modification is possible. Since the linear
system is asymptotically stable for k >0,any Q (k) > 0 must yield a
P(k) >0 . In the second-order system considered above, P (k) could

be written as fo—which is independent of k — together with a matrix which has
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all elements zero except the element in the first row and first golumn which is
-2k . In replacing Eq. 32 by 34 it is necessary that k be a function of x,

only since the tirr'1e derivative of Eqs. 32 and 34 yield identical Q's considered

as functions of k. Further,for k>0 Eqgs. 32 and 34 also obey

Vi) 2x' B x . (36)
_130 is a positive-definite matrix since it is a solution of Eq. 15for k=0 .

Hence, V (x) of Eq. 34 is a positive-definite function.

D. Generalization
The results obtained in the preceding section may be generalized to
the case of a system with several parameters kl’ kZ’ «--—‘km. For the linear
system one.can attempt to find a Liapunov function of the form

Im

Vix)=x'P_x + Z v. k, x.2 (37)
. - - =0 - 1 11
i=1
where _I_’o is independent of the ki's and v, are constants (izl---m, m <n).

For the nonlinear system, if k., = ki ‘(xi) , the Liapunov function may be

modified to

X. )

m i
Vix)=x' §°>_5 + Zz v; S ki(u) u du (38)
i=] 0

The total time derivative of Eqs. 37 and 38 yield identical Q's as functions

of the ki:i .
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Further, o % 2
J
Vi(x)>x P x + Z v, k,x, (39)
i=]
where
. :
k, = IYI}?'J{ [ X, (xi).] v; <0
' (40)
M}i{n [ki(xi) ] Vi>0

i
Eq. 39 is clearly greater than zero, .since it is a special case of Eq. 37 which
is greater than zero. ( || x [} #0 ).

It is also possible to make a further generalization using LaSalle's.
extension [2] of Liapunov's theorem. According to LaSalle's theorem, it is
permissible for v < 0 as long as V does not vanish identically on a
‘trajectory. This implies that Q may be chosen to be only positive s.emi;-

definite. For the second-order system of Eq. 23, if

Q(k) = 0 0
, (41)
0 4a
then,
Py = ¢t vk, plz =0, 2ap,, = 4a (42)
and, hence,
c=0,v=p22,p22=2. (43)
For the nonlinear case we have the Liapunov function
*
Vv (x) = 4§ uk(u) du + 2x,° (44)

and

V(x) = - dax,® . (45)
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Hence, even for the case when Q ( k) is only positive semi-definite the

remarks of the preceding sections apply.

k

E. Summary

The results of this section may be summarized as follows: :Consider

12 72

1.

k,-«-k .
m

‘the differential equation x = F x which depends linearly on parameters

V=x'P (,kl ,-—-km) x is a Liapunov function if P

is the.solution of the equation

E'(ky, -~k WP +P Flk), ---k )= - Qk;, ---k_)

2.

Ifa Q>0 can.be selected such that P is independent

of the ki's, V(x) =x'P x is a common Liapunov function
ip the range lii < ki < Ei and,consequently, for the nonlinear
system where k, = k, (x). However, in most cases.sucha
Liapunov function can rarely be obtained.

A modification (which may be used for the nonlinear system)
is possible if ki = ki (xi»). In such a case ifa Q>0 is
selected so that the solution of Eq. 46 yields a P (kl’ - km)
such that pij is a constantfor i # j and Py is. a linear
function of k, , the Liapunov function for the nonlinear
systemisasshown in Eq, 38 . It is greater than zero for

”}_g ” # 0 as it may be bounded as in Eq. 39 by a quadratic
form coming from the solution of Eq. 46 for a particular value

of the constants ki in the allowable range.

If the solutions of the equations are stable for k, <k, -<-T<'i

(46)
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F. Conclusion

The procedure presented in this section is seen to be similar to the
“variable gradient method?" V[3] developed recently. In the conventional
approacha V(x)>0 is selectéd as a candidate for a Liapunov function and
the conditions the parameters of the system have to satisfy to make v (x)<0
are determined to establish the stability conditions. In the "variable gradient
method " the gradient YV of V is chosen to make V = YV'k negative
definite. -13—(22——}—1 curl conditions have to be satisfied by VV to make it
the gradient of some potential function V (x) . One must then insure that
V(z)>0 for [[x ] # o0

In the approach presented in this section, the nonlinear problem is
related to the corresponding linear problem (when all the parameters are
constant) for which the stability conditions are known. By selecting a
-Liapunov function for the linear problem and using the procedure indicated
previously, one is assured that V(x) is positive and V(_:E) negative
definite even for the nonlinear system.

In the following sections, the above approach is applied to several
problerhs. Modifications to the procedure are also suggested - always

insuring that the conditions for the stability of the nonlinear system reduce

to the Routh-Hurwitz conditions when the parameters are constant,
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III, THE SECOND-ORDER SYSTEM
In this s,ecéion, conditions are obtained for the stability of certain
‘second—orfier differential equations. The first tw.o‘ results have been discussed
by other authors [2] but are included here for convenience. The conditions
obtained for the problem in section C are hopefully,new and are less

restrictive than those known to the authors.

A x+f(x,x)x+g(x)x=0 (47

The usual state vector representationfor Eq. 47 with x = x; is

k| = x,
. (48)
x, = -gx, -'fx2
1For this case
_Q_(f’ g)_—. nglz gpzz'P11+fp12
(49)
8Py ~ Py t1Py; 2fpyp - 2Py,

For f and g constant the Routh-Hurwitz conditions demand that
f, g 20 for stabilityor £, g> 0 for asymptotic stability. Hence, f = 0 may

be assumed to be in the allowable range.

9_(0, g-): zgplz ngZ_pll
(50)
8Py - Py - 2Py, |
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Since for g>0 Q (0, g) can never be positive definite, one must take

Q(0,g)= 0 sothat

H

P2 0 {51)

Pp; T P8 - (52)
;Since g =g (x1 ) and P,, is assumed to be a.constant condition,Eq. 52 can
.be satisfied, With Eqs. 51 and 52, Eq. 50 reduces to
Q(f,g) = 0 0

(53)
0 pr22

so that one may take q,, = 2f and, hence, p,, = 1. Thus, for Eq, 48
y 22 ’ s P22 ’ q ’

one has
*1
vV = Z‘S-ug(u)du-FxZ2 (54)
0
and
V=-2f (x, x,) xz2 . (55)

V may not vanish identically on a trajectory for £> 0 and g (x1 ) #0 for

x4 #0 . Thus, Eq. 54 indicates asymptotic stability in the large for

(i) f(xl,x2)>0
(ii) g(xl);{o for 3 £ 0 (56)
*1
(iii) gug (u)du -+ o0 as -]-xl | >
. 0

(_lii;‘..)‘ of Eq. 56 with (ii) demands that g(‘xl ) >0 for x; £ 0. [The

argument starting with Q (f, 0) was essentially given in the previous section].
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B, x+f(x)x+g(x)x=0

This is a special case of Eq. 47 but has been included here to

indicate the importance of the choice of state variables while determining

(57)

a Liapunov function. Ina practical situation the "average! dissipation may

be more significant than the instantaneous dissipation and the Liénard trans-

" formation [4] may be used. Defining

!

g\ f(u)du =F(x1)

:Eq. 57 reduces to o

x

y = -f(xl)sx1 tox,

*2 TN
where
f(x F(xl)
l)= 3
For this case,
Ql(f, g)= Z(fp11+gp12) fpypt &Py, - Py
N TP SR T
Selecting
Q (%)= | d; 0

0 0

(58)

(59)

(60)

(61)

(62)
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which is positive semi-definite (or > 0 ) for q, >0 , itis found that p;, = 0

and Py = 8Py - These conditions are compatible for Py = constant.

with q,, = ng , one obtains p,, =1 . Thus,
11 22 ’
*1

V= ZS ug(u)du+ X,
0

2

and

. A Z
V= - ?-gfx1 = - ZgF(xl)x1

Equation 63 indicates asymptotic stability in the large for

F(x,)
oA 1
(i) ‘f(x1)=—————x1 >0 for %) ;-’0
(ii) g(x1)> 0 for Xy Z0

*1
(iii)S ug(u)du-—» oo as [xl | = o0
0

Then,

(63)

(64)

(65)

' With Eq. 65, V will not vanish identically except on the x = 0 trajectory.

Furthermore, Eq. 65 does not demand that the instantaneous dissipation

be >0 , but only that the "average" dissipation be >0 . As an exampie of

this, consider

‘g(x1)=1
£(x) = (xp = 2)(x; +2)(x; /T )x, +/3) = ¥ -7 2412

Then

4 2

x Tx
i S S 1
f(x))=—3 3

+ 12,
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which is >0 for real x,. Notice f(xl ) is negative for -2<x; <-¢3 and
V3< X, € 2

C. Second-Order Nonlinear. Feedback System

+ x X + x Xy

3 M2 2 M~ ] 1
__\li D ‘ _\lf ls/
SERS —e )

Figure 3. Second-Order Nonlinear Feedback System

The system of Fig., 3 may be described by the set of equations

*1 -g (xl),x1 + %,

(66)

X, -h(xl)x1 - f(xz),x2

)

This may be reduced to the single second-order differential equation
-

% + [g(x)-i-g'(x);x + (1 +-Ei§‘l.’f-) f(:‘:+g(x)x) J;‘c+h(x)x=0 (67)

[
.where x = Xg -

Eq, 67 is the standard form of Eq. 47. There are two immediate
objections .to applying the results of A, A perhaps minor objection is that
Eq. 67 contains a derivative of the function g . It would be desirable not
to demand that the nonlinearities be differentiable fuhctions. A more serious
objection and one in fact that prohibits the application of A, is that the

"dissipation" of Eq. 67 is not of constant sign in the vicinity of x =0 .
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"Examining Eq. 67 for the case of f, g, h constant, one obtains

R+{f+g)x+(fg+h)x=0 . (68)

The system is thus stable for
(i) fg + h > 0
(69)
(ii) £ + g > 0 ,
As has been previously mentioned, one wishes to select the Q(f, g, h) for

the nonlinear system which will be no more restrictive than Eq. 69 when

applied to a linear system.

Q(f’ g, h)= 2(p11g’+p12h ' p22h+p12(f+g)'p“
(70)
L P22h+P12(f+g) Py 2(p22f'P12)

As in Eq. 23, the off-diagonal elements of Eq. 70 will introduce undesirable

restrictions on f, g, and h . For f, g, h constant, one could select

Q(fsg’h)= qll‘ 0

(71)
0 0 s
and, hence, obtain
P12 = P
Py < pzzh +P12(f+ g) T (72)
91 < 2(P11g+P12h)
if
q;, =4(£+g) (fg+1) (73)
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‘then the conditions of Eq. 69 are clearly displayed. WithEqs. 72 ahd 73,

one finds
P;; < Zh+2£(f+g)
Py * 2f (74)
Pz = 2

For the nonlinear problem, however, since f = f (xz), one is unable
to select P11 and Py, 2s in Eq. 74 . Realizing that Eq. 69 implies that

for g > 0 any f greaterthansomeminimum/is satisfactory, one may try

Py, = 2h+t 2f (£ + g)
P, = 2 (75)
Ppz = 2
where
f = Min [f(x,)] . : {76)
xz .

Notice that even for f, g,h constants and g <0 and h>0, { from
Eq. 69 is not permitted to increase without bound.
- With Eq. 75, 70 becomes
Q = 2(htfg)lif +g) f(f-f£)
£ (£ - £) 2(f- 1)

(77)

which is at least .> 0 for

2
i) g+g) > 58 > 0 (78)
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since f>f . If one defines
T = Max [f (xz)'] (79)
x
2
then the system is asymptotically stable in the large for

(i) £g(x)+h(x)>0

2 ‘
(i) [£+g (x)][£e (x;)+ b (x)]> £LE=L) > o (80)
and x
(iii) g. [fg(u)+h(u)]udu—~ coas <[x1-[.-> ©
0
and
*1
V=2 g. [£fg{u)+h(u)] udu+ (ixl + xz)2 (81)
0

Eq. 80 reduces to the conditions of Eq. 69 for f constant even with
g=g .(xl) and h=h (xl) and also permits a negative g (xl) . (ii1) of
Eq. 80 may be used to determine the maximum value f (xz) may assume
while still being guaranteed stability by Eq. 81 . It is clear that the
conditions of Eq. 69 are necessary to allow for the validity of Eq. 80 .
Further, notice thaf it was not necessary to introduce the derivativesof any
of the functions through a Jacobian matrix [5]. This was partially due to
the form of ¥ , i.e., FIJ = Fij
As.an example of the above, take

(xj ) only.

'lxll
f(xl),=2+ae , a

.vxz
g(xl)'=-6'1

and

hx))=6+2¢ [xll
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Then f=2 and f=2+a for a>0 . Iitis desiredto find how large a
may be taken. Now (fg+h) > (-2+6)=4>0 and f+g>2-1=1>0
Thus,

(fg+h) (f+g)24

One may select, therefore, from Eq. 80

ﬁ(-{'f) = 3
4

and, hence,

f = £+3

n
o

so that stability is assured for 0<a <3

IV. THIRD-ORDER SYSTEM
In this section, conditions for the stability of the differential equation
%+ f(x, %, %)% +g(x, X)X +h(x)x=0 (82)

are considered. This equation can be represented in the standard state vector

form as
X) = X,
Xy = x4 (83)
5:3 = -h(xl)xl-g(xl,xz)xz-f(xl,xz,x3)x3 |

where x = X
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When f, g and h are constants, the Routh-Hurwitz conditions for
stability are
(i) f,g,h>0 (84)
(ii) fg-h >0
The conditions for stability of the nonlinear problems to be derived below

are such that they reduce to Eq. 84 when f, g and h are constant,

A, X+ f(x)x+ gx)x+x=0

Using the above notation,

_ k

Q(f,g,h)= 12p)3h P)38P3RP)) P33R tPy3i-Py,
P138¥Py3h-Py . 2(py38-py,) P338*P23fP22 P13l (g5
P33P tPi3iPlp  P338tPy3fPayPr;  2(Py3fepp)

The problem at this stage is to determine Q so that it contains in a
readily recognizable form the conditions of Eq. 84 if f, g, h were constants,
One may thus proceed as in-Section III-C and attempt to employ a diagonal
Q . Noticing that dp3 = 435 contains f(xz), g(xz), and Pyp 4 itis

possible to make these terms zero. Thus, one tries

Q= o 0 0
0 95z 0 (86)
0 0
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-Solving Eq. 85 with 86,

P;; = Pp3h
P, = Pa3h
Pz = 0

Pz = P338 * Pp3f

Gz = 2(Pp38 - P33h)

433 = 2(P33f - Pp3)
:Selecting

922
and

433 = 2(f-m)

where m is a constant, then

p = m
and 23
P33 = 1 ‘
Since Q mustbepositive definite, it is necessary that
(1) £-m> 0
and
(ii) mg-h >0
where
£ = Min[f (XZ) ]
*2
and

g = Min[g (xz)]
= x,

(87)

(88)

(89)

(90)

(91)

(92)



TR403 ~25-
[Equality is not permitted for both (i) and (ii) of Eq. 90] . m may be selected
to maximize
q = (f-m) (mg - h) : (93)
or

fgt+h
m = ;:i?‘“"

(94)

o} +

With Eq. 94, Eq. 90 reduces to

fg - h
) :éz-g-—- > 0

) (95)
ig-h
(i) — > 0
Thus, for Q >.0C , it is necessary that
(i) 0
(96)

g >
(ii) £g-h>0
For (ii) of Eq. 96 to hold for h = 0, one must also have £> 0 . Taking
h >0, it is assured that m > 0 which is required by Py = mh .
In summary, the system is asymptotically stable in the large for
(i) __'f__,_E_, h >0 |
{ii) _f_g_ -h>0

(97)

where i x,

V=mhx12+ 2hx; %, + 2 g‘ [g(u)+mf(u)] udu
0

2
+ me2 Xy + *3 (98)
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and m is given by Eq. 94 . Further,

v > x _1_3*-3_:_ {99)
where
%
P = mh h 0
h (g +mf) m (100)
0 m 1

. which is positive definite. With Eq. 97, \'s ma:y not vanish identically ex-
cept on the x E 0 trajectory. For f and g constant, conditions Eq. 97 are

identical to those of Eq. 84.

B, ¥4+ f(x)x+g(x)x+h(x)x=0

This case is to be identical to that of A, except here h is not a
constant but h = h (:\:1 ). If Eq. 98 wére independent of h, then it would also
be a Liapunov function for this case. However, Eq. 98 is a function of h
but fortunately only in what corresponds to the Py, xlz term and the
Zpl.le x, term (taking m as constant), A modification of these terms may
be attempted in a manner.that will not drastically alter the Q of A .

By examining Eqgs. 85 and 87, it is clear that the proper generalization

of the X 2 term is to replace it as before by
P11%

S

‘2 5- Pi) {(u) u du
0

since it came from p,, = p,,h . For this case then, one might try this as
11 " P23 ’ g

the only change taking
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X, x,
+ 2 S‘[g(u)_+mf(u) Ju du
: (101)

V=2m qg‘h(u)udu+ 'Zh(xl>xl x,

0

2

+ mez X3 + Xg .
94 for it is required to

It is clear that m has to be redefined from Eq

be constant.
Trying 'Eq. 101 , one obtains
(102)

V= -xQx

where
Q = 0 0 0 ‘—'
0 2 (mg - H') 0 (103)
0 0 2(f -m)
H(xl) = h(xl)xl R
(104)
and _ an
odxy (105)
Thus, for Q > 0 even in the most restrictive .case, it is necessary that
(i £ - m> 0
and (106)
(ii) mg-H > 0
(107)

where
H = I\/}I‘aix [H (%) ]

Here again equality is not permitted for both (i) and (ii) of Eq.106. If m is

selected as in A tomaximize the product of (i) and (ii) of Eq. 106, then
(108)

=£§+"HT
m =. ———————
2g
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With Eqs. 106 and 108 , following A, for Q> 0, it is necessary that
(i) g > 0

(i1) fg - > 0

(109)

If (ii) .of Eq. 109 is to-hold for h=0 , one must have £>0 . Here H>0
guarantees an m > 0 ,
With m defined by Eq, 106 and taking V of Eq. 101 as the Liapunov

function, X,

V > 2m \S’ H(u},du+'2H(x1)x2+§x22’+m£x22+-2mx2 x3+x3Z (110)
0
or
. )
H(xl) 2 _ 2
V> -+ /Exz + [xz,x3] mf m|" %, |+ s S[mg-H’(u)]h(u)udu .
.‘§ m L X, = 0

(111)
"With Eq. 109, m >0, and h (x)) >0 forx £0,BV.of Eq. 111 is >0

for ||x|] # 0.

To summarize, the system is asymptotically stable in the large for
(i) h(x;)>0 for x; £ 0

13 [
(i) £, g, H > 0 (112)

{iv) S H(u) du—» 0 as lxll-*oo
0

(iv) of Eq. 112 insures that V-+co as H:_c” ~ oo . Also notice that V may

only vanish identically on the x = 0 trajectory.



TR403 -29-

C. The General Case X+ f(x, %, %)%+ g(x,%)%x+h(x)x = 0

It is desirable that the results of this section include as a special
case the results of the sections A and B . This implies that a Liapunov

function must be obtainedwhi¢ch would reduce identically to that of Eq. 101

for f=zf (x7) and gz g (xz) . To this end, one anticipates a redefinition of

m of Eq. 108 and a change in the integral involving f and g . Thus try

*1 X2
V=Zm5H(u_)du+ Z.H(xl)xz-i-zg[g(u)i-mf(u)]u du
0 0

2
+ 2m X5 Xq + Xq

A
where g (xz) and f (xz) are to be determined in a manner to reduce

identically to g and f when they are functions of x5, only.

Now
Vs -xQx
where
Q = 0 0 0
0  2(mg- H) (g-8)+mif-5H
0 (g-§) +m (£-£) 2 (f - m) )

To insure that Q > 0 one demands that

b
(i) mg—f—I_'>0

(i) £ - m > 0
and - . A rL2
(iii)q=4(m§—H')(_f_=-m)—Max[(g-g)+m(f-f)] >0

(113)

(114)

(115)

(116)
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where here the — means the absolute minimum of the particular function,and
H' was defined in Eq.107. If Eqll6 is satisfied, then Q > 0 .

(iii) of Eq. 116 is the requirement that was not present in the previous
sections. This condition will be the least restrictive if one selects é\ and f\
so as to minimize Max [(g - 8) + m (f - f\) ]2 . With the stipulation on g and
? of the first paragraph of C, itis natural to make the following definitions:

f(xz) = Max [f(xl,XZ, X, )]

X2 %3
£lxp) = Min[f(x),5,, %) ]
*10%3
2 ) - F(x,) +£(x,)
Koyl F 2
{117)
T = Max | Max I:f('x X,, X )-,,f\(x)
17 %2073 2
X X X a.
2 | %12 %3
or
- f(x,) - £f(x,)
f = Max [ 2 7 2:’
x2 R —
£ £ Min [i(xz)]
= x,

The same notation is adopted for g ,(xl , xz) , e.g. g X, )= I:Iax [g(xl,xz)],
to define g (xz) y 8 (xz) s é\(xz) , g, andé. H' has been defined previously.
With the above, (iil) of Eq. 116 requires that
q=4(mg - F)(L-m) - (g + mT)2 >0 | (118)

/
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If now m is selected to maximize q of Eq. 118, it is found that

2 Ty

-

g 2

m = >

€

+
+

= |

4

o= | T

With m taken as in Eq. 119, itis found that q > 0 requires

where

e= VEPiE+T g (£g+
To summarize,the following conditions insure that Eq. 82 is

asymptotically stable in the large:
(i) h(x;)>0 for x; # 0

(=]

)i, g, H >

(i) fg - H > €> 0

*

(iv) é‘ H(u)du—+ oo as’ ,xll-' ©

where ¢ is defined in Eq. 120 and the Liapunov function is defined in

(119)

(120)

(121)

(122)

Eq. 113 with m given by Eq. 119 . With Eq. 122, one can show as in B

that V > 0 for - l IZ‘_' [ # 0 since Eq. 122 implies m > 0 . Further, v may

only vanish identically on the x = 0 trajectory.

The conditions for stability of Eq. 122 and € in Eq. 121 may appear

complicated. The following four cases , however, indicate that these
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conditions may be reduced to simpler forms for specific types of nonlinearities

and do contain the results of A and B,

1.

Take f, g, and h as constants. Then = Ez €=0, and . Eq, 122
reduces to the Routh-Hurwitz conditions of-Eq. 84.

Take f constant, g=g(k), and h=h(x). Thenfzgsz €z0,
and Eq. 122 becomes Barbashin's result [6] .

Take f=f (%), g=g(x), andh=h(x). Then €z 0 and Eq, 122
is just Eq. 112 ¢f B. For h = constant, Eq. 122 becomes Eq. 97
of A, . |
Cases 2 and 3 considered above require conditions similar to
those of a linear system. Ifg=g(x), f=f(x,Xx), and

h=h (x)an e may be determined satisfying (iii) of Eq. 122.

Since, in.this case, g = Oandf=§,

=

H=7-.

[N

e dn
and the condition reduces to

L8l %) <T=5 + =25
Vv £HT
[Nmé?ical example: assume _ = I, £=7) and H' = 4 _so that
‘ :
fg=T'=3>0. Taking €=2.99 itis seen that'l <f(x,%)< 3.99

insures stability, ]
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Consider the following example which indicates an application of

the most general results. Assume

"[xlz +-x22‘+x3’21 a
f(xl,xz,x3)—ae +1+‘;‘-;‘-_-*_——1~—
-[x16+x22]
g‘(xl,x2)=6+be
+ 2.b
X, + 2
hix )=l [1-(4x)e ']
xl = ‘-’-E—i—— - xl e

for x; >0 and h ("xl) =h (xl)
It is desired to determine tHe range of a and b so that stability is assured,

Using the previous definitions

- _XZZ a
f(x2)=ae + 1 + lx2'+1
{
f(xz):l )
x‘2 '

A _a =2 1
f(xz)—-—z-e +'|x2l+l + 1
_xz |

> _ a 2 1
f —Max—z— e + 'x , . a
x 2
2
L=
= _x2
Elx,)=6+be ° + —2P
+ 2
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g(xz) = 6 )
-x
. b 2 2
Ry =642 le 2 4+ —F
X, + 2
!‘ 2
~ 2 2 _
g = Max 5 e to—— = b
x x, +2
2 2
£ b R
Also
-xl
‘H(x.1)=x1-3‘[1—(1+x1)e ] for x; > 0
and
H(—x1)= —H(xl)
H'(x1)= 1 - 3x1e : ‘f'or'xl >0
and

- .= H!
H'( -x)=H{x)
H =1 .
Thus, fg -H'=5>0 and one may select € <5 . Then with Eq. 121,

a’+ 7ab + 6b% < 25
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The region of allowable a and b is shown in Fig. 4.

5.

Region of allowable a and b

(i) a,b>0
(ii) a2 + 7ab + 6b% <25

a2+ Tab + 6b% = 25

Figure 4. Region of Permissible Values of a and b

For example, one may take

l. a=0 and b<—-5—

2. b=0 and a< 5

3. a=b <

2.
V14
All the conditions of Eq. 122 have been obeyed. Notice that H'(x1 ) is

negative for certain values X1, €. 8y lxl [ =1,
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D, ¥+ix+g(x)x+hx = 0

(123)

In this section, f and g are constants. Of course, Eq. 123

may be considered as a special case of C .

However, less stringent

conditions will be derived for stability than those given by Eq. 122 for this

special case.

The following state vector form is taken which may be considered as

a logical extension to Eq. 123 of the Liénard transformation of Section III - B

for a second-order system:

where

and

S’l = Y3
¥, = -hy
V3 = -Gy ) ty, - fy,

y, = ¥

Yy

G(yl)= Sg(u)du .
0

Proceedingasin A,

Gly;)
o} v

) _

G G
'—Z—[hplz ty; Pisl PPazt §oPasvPys

G
thz"?l‘P23‘P13 ~2P,3

G
hp, 3t N P33tP13-Py; 37D P33

(124)

(125)

G
hp, s+ ;71“-1’33”?13 P1)

fp,3-Pj, - P33

2(fpy3-Py3) ]

(126)
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Gly,)
Notice that for g constant, _—'—Y———- = g .
1
One may select
Q = 2(f G . h) 0 0
0 0
0
so that
2 G
P = £ 4 P = -1
11 Yy 12
. £ - ¢
P2 * % Pys =
P33 = 1 Pz = 0
and, hence,
Y1
”~

2 2 f 2 ‘ 2
V=1 ' +23 G(u)du - 2y1y2+—ﬁ-y2 + -nyly,3 + Y3
0

or
Yy

u

V = -%»S[f G(u) -hjudu + —f_f (}rz«-%—yl)‘2 + (fy1 + y:,’)'2
0

Thus, to summarize, Eq. 123 is asymptotically stable in the large for

G(Yl)

CGly,)
@) £ -t

¥

(iid) Y (£ 8
0

h >

0 for ylyf 0

- h >0

(v} 4

u

] udu+ o as lyllA-oo

(127)

(128)

(129)

(130)

(131)
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Further, V>0 for HX“ # 0 and that with (iii) of Eq. 131, V> o as
| |Xl [ - . Also,‘ with Eq. 131, V may only vanish identically on the
y = 0 trajectory.
' Gly,)
It is required by Eq. 131 that only 5 be > 0 and not that
1
'g(yl'),> 0 . As an example of this, consider
' f = 36
‘ 4 2
h = 186 '

Then
4 2
G(y;) Vi v
Y, -1 T3

+ 12

Glyy) 187
Yl 18 —33— .

which is > 0 for y; real. Further, the minimum of

are, hence, satisfied.
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V. CONCLUSIONS
The various results presented throughout this report were derived
by considering a CLF (or a modification of the CLF ) for a related linear
.system. All the results for the nonlinear equations reduce to the usual

-Routh-Hurwitz conditions when the nonlinearities are assumed constant.
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